Urea is a product of ureidoglycolate degradation in chickpea. Purification and characterization of the ureidoglycolate urea-lyase.

نویسندگان

  • A Muñoz
  • P Piedras
  • M Aguilar
  • M Pineda
چکیده

A ureidoglycolate-degrading activity was analyzed in different organs of chickpea (Cicer arietinum). Activity was detected in all the tissues analyzed, but highest levels of specific activity were found in pods, from which it has been purified and characterized. This is the first ureidoglycolate-degrading activity that has been purified to homogeneity from any photosynthetic organism. Only one ureidoglycolate-degrading activity was found during the purification. The enzyme was purified 1,500-fold, and specific activity for the pure enzyme was 8.6 units mg(-1), which corresponds with a turnover number of 1,600 min(-1). The native enzyme has a molecular mass of 180 kD and consists of six identical or similar-sized subunits of 31 kD each. The enzyme exhibited hyperbolic, Michaelian kinetics for (-) ureidoglycolate with K(m) values of 6 and 10 microM in the presence or absence of Mn(2+), respectively. Optimum pH was between 7 and 8 and maximum activity was found at temperatures above 70 degrees C, the enzyme being extremely stable and resistant to heat denaturation. The activity was inhibited by EDTA and enhanced by several bivalent cations, thus suggesting that the enzyme is a metalloprotein. This enzyme has been characterized as a ureidoglycolate urea-lyase (EC 4.3.2.3), which catalyzes the degradation of (-) ureidoglycolate to glyoxylate and urea. This is the first time that such an activity is detected in plant tissues. A possible function for this activity and its implications in the context of nitrogen mobilization in legume plants is also discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An alternative pathway for ureide usage in legumes: enzymatic formation of a ureidoglycolate adduct in Cicer arietinum and Phaseolus vulgaris.

Ureidoglycolate is an intermediate in the degradation of the ureides, allantoin and allantoate, found in many organisms. In some leguminous plant species these compounds are used to transport recently fixed nitrogen in the root nodules to the aerial parts of the plant. In the present study, it was demonstrated that purified ureidoglycolases from chickpea (Cicer arietinum) and French bean (Phase...

متن کامل

Ureidoglycolate hydrolase, amidohydrolase, lyase: how errors in biological databases are incorporated in scientific papers and vice versa

An opaque biochemical definition, an insufficient functional characterization, an interpolated database description, and a beautiful 3D structure with a wrong reaction. All these are elements of an exemplar case of misannotation in biological databases and confusion in the scientific literature concerning genes and enzymes acting on ureidoglycolate, an intermediate of purine catabolism. Here we...

متن کامل

Purification and Characterization of Alginate Lyase from Mucoid Pseudomonas aeruginosa Strain 214

Pseudomonas aeruginosa is an opportunistic pathogen that causes a variety of infections in compromised patients. The ability of Pseudomonas aeruginosa to produce chronic infection is based in part on its ability to biosynthesis of biofilm, and alginate is the major polysaccharide in the synthesized biofilm. So alginate degradation is very essential in the dispersion of Pseudomonas aeruginosa bi...

متن کامل

Induction of the allantoin degradative enzymes in Saccharomyces cerevisiae by the last intermediate of the pathway.

Saccharomyces cerevisiae can degrade allantoin in five steps to glyoxylate, ammonia, and "CO(2)." We previously demonstrated that synthesis of the urea carboxylase-allophanate hydrolase multienzyme complex is contingent upon the presence of allophanic acid, the product of the urea carboxylase reaction. Since these enzymes catalyze the last two reactions of allantoin degradation, experiments wer...

متن کامل

Structural and Functional Insights into (S)-Ureidoglycolate Dehydrogenase, a Metabolic Branch Point Enzyme in Nitrogen Utilization

Nitrogen metabolism is one of essential processes in living organisms. The catabolic pathways of nitrogenous compounds play a pivotal role in the storage and recovery of nitrogen. In Escherichia coli, two different, interconnecting metabolic routes drive nitrogen utilization through purine degradation metabolites. The enzyme (S)-ureidoglycolate dehydrogenase (AllD), which is a member of l-sulfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 125 2  شماره 

صفحات  -

تاریخ انتشار 2001